Cloning, tissue distribution, genomic organization, and functional characterization of NBC3, a new member of the sodium bicarbonate cotransporter family.
نویسندگان
چکیده
Previous functional studies have demonstrated that muscle intracellular pH regulation is mediated by sodium-coupled bicarbonate transport, Na+/H+ exchange, and Cl-/bicarbonate exchange. We report the cloning, sequence analysis, tissue distribution, genomic organization, and functional analysis of a new member of the sodium bicarbonate cotransporter (NBC) family, NBC3, from human skeletal muscle. mNBC3 encodes a 1214-residue polypeptide with 12 putative membrane-spanning domains. The approximately 7.8-kilobase transcript is expressed uniquely in skeletal muscle and heart. The NBC3 gene (SLC4A7) spans approximately 80 kb and is composed of 25 coding exons and 24 introns that are flanked by typical splice donor and acceptor sequences. Expression of mNBC3 cRNA in Xenopus laevis oocytes demonstrated that the protein encodes a novel stilbene-insensitive 5-(N-ethyl-N-isopropyl)-amiloride-inhibitable sodium bicarbonate cotransporter.
منابع مشابه
Functional characterization of NBC4: a new electrogenic sodium-bicarbonate cotransporter.
Sodium-bicarbonate cotransporters are homologous membrane proteins mediating the electrogenic or electroneutral transport of sodium and bicarbonate. Of the functionally characterized sodium-bicarbonate cotransporters (NBC), NBC1 proteins are known to be electrogenic. Here we report the cloning and functional characterization of NBC4c, a new splice variant of the NBC4 gene. At the amino acid lev...
متن کاملChronic metabolic acidosis upregulates rat kidney Na-HCO cotransporters NBCn1 and NBC3 but not NBC1.
Several members of the Na-HCO cotransporter (NBC) family have recently been identified functionally and partly characterized, including rkNBC1, NBCn1, and NBC3. Regulation of these NBCs may play a role in the maintenance of intracellular pH and in the regulation of renal acid-base balance. However, it is unknown whether the expressions of these NBCs are regulated in response to changes in acid-...
متن کاملMolecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney.
Electrically silent Na(+)-(K+)-Cl- transporter systems are present in a wide variety of cells and serve diverse physiological functions. In chloride secretory and absorbing epithelia, these cotransporters provide the chloride entry mechanism crucial for transcellular chloride transport. We have isolated cDNAs encoding the two major electroneutral sodium-chloride transporters present in the mamm...
متن کاملMolecular cloning and biochemical characterization of two cation chloride cotransporter subfamily members of Hydra vulgaris
Cation Chloride Cotransporters (CCCs) comprise secondary active membrane proteins mainly mediating the symport of cations (Na+, K+) coupled with chloride (Cl-). They are divided into K+-Cl- outward transporters (KCCs), the Na+-K+-Cl- (NKCCs) and Na+-Cl- (NCCs) inward transporters, the cation chloride cotransporter interacting protein CIP1, and the polyamine transporter CCC9. KCCs and N(K)CCs ar...
متن کاملCloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family.
The K+-Cl- cotransporters (KCCs) belong to the gene family of electroneutral cation-chloride cotransporters, which also includes two bumetanide-sensitive Na+-K+-2Cl- cotransporters and a thiazide-sensitive Na+-Cl- cotransporter. We have cloned cDNAs encoding mouse KCC3, human KCC3, and human KCC4, three new members of this gene family. The KCC3 and KCC4 cDNAs predict proteins of 1083 and 1150 a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 274 23 شماره
صفحات -
تاریخ انتشار 1999